
979 

Acta Cryst. (1962). 15, 979 

T h e  E s t i m a t i o n  o f  a n  O r i e n t a t i o n  R e l a t i o n s h i p  f r o m  T r a c e s  o f  K n o w n  P l a n e s  

BY J. K. MACKE~ZI~ 

Division of Tribophysics, Commonwealth Scientific and Industrial Research Organization, 
University of Melbourne, Australia 

(Received 9 November 1961) 

A least-squares method is given for the refinement of an approximate orientation relationship 
determined from measurements of the positions of traces of known crystallographic planes on the 
surfaces of a specimen. 

Introduction 

The orientation relationship between crystallographic 
axes and axes fixed with respect to a specimen is often 
determined from measurements of the positions of 
traces of crystallographic planes of known type on 
one or more surfaces of a specimen. These traces are 
commonly those arising from twins, slip or thermal 
etching. Barrett (1952) describes methods for deter- 
mining this orientation relationships using a stereo- 
graphic net and points out that  the result is not neces- 
sarily unique. In this paper it is assumed that one 
of these approximate orientation relationships has been 
found (e.g. by one of Barrett 's methods) and the 
method set out below provides a least-squares type 
of refinement for improving it. The method is numer- 
ical and should be used only when both the data and 
the need justify an accuracy of a few tenths of a 
degree or better. 

The method is not limited in accuracy by graphical 
manipulations and uses all the observational data 
simultaneously. Furthermore, it leads to quantitative 
statistical estimates of the (non-systematic) errors. 
These advantages are, of course, achieved only at the 
cost of the labour of the numerical computations. 
The present method complements a previous paper 
(Mackenzie, 1957a) where a similar type of method 
was described for the determination of an orientation 
relationship from observations of normals to known 
planes; Otto (1961) has described alternative graphical 
(and numerical) methods for this case. 

Before proceeding, two points need to be made clear. 
In the first place, although the original irfformation 
gives only the type of crystal plane associated with 
a particular trace on the specimen surface, the specific 
indices of this plane will, in fact, be known from the 
preliminary approximate orientation relationship. 
Thus, these specific indices will be assumed known. 
The second point is important although it may 
appear pedantic at this stage. I t  concerns the axes of 
reference with respect to which all measurements are 
made. These axes are, clearly, fixed with respect to 
the measuring instrument and not with respect to the 
specimen. Thus, it is the orientation of the crystal 

axes with respect to the instrument axes which is 
primarily determined below. The specification of the 
result relative to the specimen axes requires, in 
principle, another independent determination of the 
orientation of the specimen axes with respect to the 
instrument axes. However, in practice, the latter 
determination is unnecessary provided the specimen 
is appropriately located. The specimen is usually set 
so that  the specimen axes are as nearly parallel as 
possible to the instrument axes and, furthermore, the 
measurements are usually made in such a way that  
any setting errors lead to negligible differences be- 
tween the actual observations and those that  would 
have been obtained if the setting-up had been exact. 
Thus, the difference between the orientation of the 
crystal axes with respect to the instrument axes and 
that  with respect to the specimen axes can usually 
be neglected in practice. On the other hand, a matter 
of principle is involved and the estimates of the errors 
are affected by the point of view adopted. 

The equations of condition 

The components of a vector relative to an orthonormal 
basis* can be written as the elements of a 3 × 1 column 
matrix. Thus, let tr be the (unit) column matrix 
representing the direction of the rth (1 _< r _< 57) 
measured trace relative to the (orthonormal) basis I 
fixed relative to the measuring instrument, and let nr 
be the column matrix representing the (unit) normal 
to the known crystal plane nominally containing tr; 
this normal is given relative to the (orthonormal) 
basis c fixed relative to the crystal axes and its 
components are known exactly from the preliminary 
approximate result. The problem is to determine the 
relation between the components of a vector referred 
to the (crystal) basis c and the components of the 
same vector referred to the (instrument) basis I. This 
relation can be specified by means el the 3 × 3 orthog- 
onal (rotation) matrix 

R = ( I T c )  , (1) 

* i.e. the  base vectors are m u t u a l l y  perpendicular  un i t  
vectors.  
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which is such that  if >, represents the vector y relative 
to the basis c, R), represents it relative to the basis z. 
Then, of course, R R '=  I, where the prime denotes 
transposition and I is the identi ty matrix. The matr ix  
R is here regarded as defining a change of basis. 
However, i t  can also be interpreted as the matrix 
representation, referred to I, of the rotation which 
carries vectors parallel to the base vectors of z into 
vectors parallel to those of c. 

The angle Or between the observed trace tr and the 
plane with normal nr is given by 

sin Or = n~ R % .  (2) 

If the N observations were ideal and not subject to 
error all the angles Or would be zero for the correct 
choice of R. However, in practice, this is not so and 
an adjustment procedure such as the method of least- 
squares is necessary. This procedure involves minimiz- 
ing the quadratic form 

~v 
S = ~ w~i sin 0~ sin 0~-, (3) 

i ,  i = l  

where the w~j are the elements of an N × N positive 
definite matr ix  W. The best possible choice for this 
weight matr ix  is known to be (see Plackett,  1949) 

W = V- t ,  (4) 

where V is the N x N covariance matr ix of the quan- 
tities sin Or. This procedure, rather than minimizing 
a simple sum of squares, takes account of correlated 
values of sin Or. In  fac~, as will become clearer below, 
observations of more than one trace in a given spec- 
imen surface can lead to such correlations and there 
is not much increase in numerical complexity to take 
account of them. 

In  the following calculations the approximation 
sin 0 = 0  is made and the choice of W is modified 
slightly. 

Suppose tha t  R0 is an approximation to R derived, 
say, from preliminary graphical manipulations. Pu t  

R = [ l + ( h h ' - I ) ( 1 - c o s  ~v)-{h)s in  q]R0,  (5) 
where 

{h}= h~, 0 , -  t (6) 
- h~, ht, 

is a skew symmetric matr ix such tha t  {h})' is a column 
matrix with elements equal to the components of the 
vector product h x y. The factor in square brackets 
on the right of equation (5) represents a right-handed 
rotation about an axis in the direction of the unit  
vector h through a (small) angle - q .  Then, ~Titing 

mr= Ronr, (7) 

{h)~0={x}, (8) 

it follows from equations (2) and (5), on neglecting 
terms of order ~0 ~ and higher, that 

Sill Or ~- m ; t r -  m;{tr)X. (9) 

The components of the matr ix  mr are approximately 
equal to the components of the normal nr referred to 
the instrument basis z, the approximation being tha t  
in which R = Ro. 

Thus, changing to the perhaps clearer vector nota- 
tion, the equations of condition which are to be solved 
for x by minimizing S in equation (3) are 

(mr × tr). x = mr .  t r -  6r,  (lO) 

where dr is the (unknown) error term equal to sin 0r. 
Note tha t  when expressed in matr ix notat ion the 
components of the vector product mr × tr are writ ten 
out as a row and those of x as a column. 

In practice, the numerical procedure is first to 
calculate mr from the given nr by means of equation 
(7) and then compute the coefficients required in 
equation (10). With the choice of W given in the next 
section, an estimate of x can be derived from these 
equations by the method of least-squares described 
in the last section. Finally, back substitution through 
equations (8) and (5) gives 8,. In  this last step a term 
(hh'-1)~0~/2 may need to be included to make R an 
orthogonal matr ix within the accuracy of the calcula- 
tions. The number of significant figures carried will 
depend on the accuracy required but  initial observa- 
tions to within 0.1 ° (3 figures) may well justify more 
figures in the final result and so 5-6 figures should 
be kept in the intermediate steps leading to equation 
(10) (including R0). The least-squares solution requires 
care and the retention of an even greater number of 
figures. 

The  choice of W 

In  equations (10) the errors arise from the errors in 
the measurements of the tr so tha t  the coefficients on 
both the left- and the right-hand sides are subject to 
error. Therefore, the standard least-squares theory 
does not immediately apply. Equations of this type 
have been discussed by Mackenzie (1957b) who has 
shown tha t  in a first approximation the s tandard 
theory can be applied provided the matr ix of weights 
W is suitably modified and the estimate of x corrected 
for bias. However, in the present case where both x 
and the errors in the tr are small both the bias and 
the modification to W can be safely neglected. Thus, 
W -t can be taken proportional to the covariance 
matr ix V of the right-hand sides of equations (10). 

This covariance matrix will depend on the particular 
way in which the observations are made. Thus, it is 
necessary to specify a suitable method in some detail 
and each method of observation will require a separate 
analysis. The analysis for a common method of 
observation is set out below. 

Suppose tha t  traces can be measured on two surfaces 
of the specimen. Further,  suppose tha t  the specimen 
is set up relative to the instrument basis I (with base 
vectors it, is, is) so tha t  the edge at which the two 
specimen surfaces meet is as nearly parallel as possible 
to it, and the outward normal to one of the specimen 
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surfaces is as near ly  parallel  as possible to i3. This 
specimen surface will be called the p r imary  surface 
and  the other the secondary surface; i~ then  lies 
(approximately)  in the p r imary  surface perpendicular  
to the common edge. When  the specimen is set up 
in  this  way the outward normal  to either surface can 
be specified by  the  angle fl tha t  i t  makes with i8, 
with fl increasing posi t ively for a r ight -handed rota- 
t ion about  il. Similarly,  the posit ion of a trace in 
ei ther  surface can be specified by  the  angle a tha t  
i t  makes with the common edge parallel  to il. This 
specification is i l lustrated in Fig. 1 (for the p r imary  
surface f l=0) .  

I1 

i2 

Fig.  1. S t e r e o g r a p h i c  p r o j e c t i o n  s h o w i n g  t h e  spec i f i ca t ion ,  
r e l a t i v e  to  t h e  i n s t r u m e n t  axes ,  of a t r a c e  t on  a s p e c i m e n  
su r f ace  w i t h  n o r m a l  p. T h e  base  v e c t o r  i 1 is a p p r o x i m a t e l y  
pa ra l l e l  to  t he  edge  of t he  s p e c i m e n  c o m m o n  to  t h e  t w o  
su r faces  on  w h i c h  o b s e r v a t i o n s  a re  m a d e  a n d  t he  ba se  
v e c t o r  i a is a p p r o x i m a t e l y  pa ra l l e l  to  t h e  n o r m a l  to  one  
of t hese  sur faces .  

I t  will be assumed tha t  the measurements  are made  
in such a way tha t  all the a readings corresponding 
to traces on one surface are made  with a f ixed sett ing 
of fl on the ins t rument .  This is common practice and  
results in correlated errors since, a l though the errors 
in successive measurements  of c~ will be independent ,  
the same error in fl will be associated with all measure- 
ments  on the one specimen surface. On the other hand,  
the  values of fl for the two different  surfaces will be 
independent .  In  any  given surface the value of ~ for 
a par t icular  trace is found as the difference between 
readings obtained by  a sett ing on the specimen edge 
and  one on the trace. The var iance (square of the 
s tandard  deviation) of an  a value obtained in this  
way is the sum of the  variances of the results for the 
two set t ings;  these variances m a y  be quite different 
due to the short length or lack of defini t ion in the 
direction of the trace. Since, in the procedure below, 
the results for the p r imary  (or secondary) surface will 

be reduced as a group before f inal ly  combining them, 
the appropriate  var iance for fl is tha t  corresponding 
to the  errors in  fl for the group in question. 

When  the observations are obtained in the above 
manner ,  the differences between the values of c~ and fl 
which are ac tual ly  obtained and  those which would 
have been obtained if the specimen had  been set up 
exact ly  are proport ional  to the squares of the angles 
which define the deviat ion from exact  setting. For 
example,  if these deviations are less t han  2½ °, the 
actual  and  ideal values of ~ and  fl differ by  less t h a n  
0.1% Thus, even with a re la t ively  crude sett ing of the 
specimen the values of c~ and  fl obta ined are for all 
pract ical  purposes those for the specimen set up 
exactly.  Thus, the value of R obtained is the same 
whether  referred to either ins t rument  axes or specimen 
axes. 

The reason for the pedant ic  dist inct ion made earlier 
now becomes clear. On the present  view tha t  all  
measurements  are referred to axes fixed in the instru- 
ment ,  there are errors in fl associated wi th  each 
specimen surface independent ly  and the two surfaces 
are t rea ted on the  same basis. On the other hand,  
if the measurements  were regarded as referred to axes 
fixed in the specimen, there is an  error associated 
with the fl value for the secondary surface but,  by  
definition, none for t ha t  associated wi th  the p r imary  
surface. This a s y m m e t r y  can lead to (slightly) dif- 
ferent values of both K and  the confidence l imits  for 
it, depending on which of the surfaces is regarded 
as the p r imary  one: this  is an  undesirable  s i tuat ion 
which I believe to be wrong in principle. 

The covariance ma t r i x  V and hence W can now be 
derived for the  method  specified above. Since the 
values of c~ and fl are all s ta t is t ical ly  independent ,  
the set of measurements  on the p r imary  surface is 
independent  of the set made on the secondary surface. 
Therefore, i t  is convenient to divide the equations (10) 
into two sets, each containing only measurements  on 
one surface, and  to t reat  each set separately.  The 
contr ibutions to the  normal  equations from each set 
are then  s imply  added before solving for x. A typical  
set is t reated below. 

For a typical  trace 

t = [ c o s a ,  s i n s  cosfl, s i n s  s i n f l ] i ,  (11) 

and it is easily shown tha t  

S t =  (p x t)Sa + (il × t)Sfl ,  (12) 

where p is the normal  to the specimen surface for 
the set being considered ( p = i 8  and  f l = 0  for the 
p r imary  surface). Thus, the corresponding error in 
the r igh t -hand  side of an  equat ion (10) is 

m .  (St= - (m  x t ) . p S ~ -  (m x t ) . i l ~ f l .  (13) 

I t  is convenient  to divide each of the equations (10) 
through by  a divisor such tha t  errors in the result ing 
equations of condition arising from errors in oct all 
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have the same, bu t  unknown, variance a 9. To do 
this the relat ive values of the variances of the O~r 
must  be assumed known and  then  the var iance of ar 
can be wr i t ten  in the form a2[a(ar)] 9", with a 2 un- 
known but  the ~(a~) known. Therefore, the appro- 
priate  divisor for each of the equations (10) is 
(mr x t~). p ~ (a~). Thus, defining 

m * =  mr/ [ (mr  × tr). p](r(~r) ,  (14) 

equations (10) become 

(mr*×tr).X=mr*.tr--(~ar/a(~r)--(mr*×tr).ii(~fl,  (15) 

the error terms being given explicitly. 
Since m r  is approximate ly  the same as the normal  

to the crystal  plane containing the trace tr and is 
not parallel  to p, the factors (mr x tr). p in the above 
divisors are not  zero. For the p r imary  plane the factor 
(mr x t~). p is just  the coefficient of xa appearing on 
the lef t -hand side of the corresponding equat ion (10). 
For the common case where the secondary plane is 
approx imate ly  perpendicular  to the p r imary  plane 
( f l=90 °) the factor is just  the coefficient of x2 and  
even if fl deviates from 90 ° by  10 ° or so, this coefficient 
can be used as the factor without  affecting the results 
appreciably;  only a small  change in the set of weights 
used is involved. 

The s equations of type (15) in a set with the same 
16 can be compact ly  wri t ten in mat r ix  notat ion as 

A x =  b - d c x * - a i ~ f l ,  (16) 

where A is the s x 3 ma t r ix  of coefficients with rows 
(m~* x tr), b and  ~c¢* are the s × 1 column matrices 
with elements m,.*.tr and (5O~r/G(O~r), and al is the 
first column of A. Now the covariance mat r ix  V is 
the mean  value of (~c(*+ ai(~fl)((~(x*+ aloft)' so tha t  
after discarding the i rrelevant  factor a 2 

W =  I -kala~/(1  +ka~az),  (17) 

where ka  ~ is the variance of ft. Note tha t  ala~' is an 
s × s matr ix .  

The normal  equations 

The normal  equations corresponding to equations (16), 
bu t  with W = I, are well known (Whit taker  & Robin- 
son, 1946). In  ma t r ix  notat ion they  are 

A ' A x = A ' b ,  (18) 

which, for convenience, will be wri t ten 

Bx = c .  (19) 

For a general W the normal  equations become 

A ' W A x =  A ' W b ,  (20) 

and  when W is given by  (17) it  is easily shown tha t  
these reduce to 

f i x = d ,  (21) 

where 
C = B - r b l b ~ ,  (22) 

d = c - r c i b l ,  (23) 

r = k / ( l + k b n ) ,  (24) 

and bl is the first column of B, and  c~ is the  first  
e lement  of c, and bn is the element of B in the upper 
lef t -hand corner. Thus, the correct normal  equations 
are very  s imply  derived from the usual  ones given in 
equat ion (18). Note tha t  b~b~ is a 3 x 3  matr ix .  
Further ,  the contr ibut ion to the 'sum of squares' ,  So, 
which is used in calculating Smin is 

So = b ' b -  rc~. (25) 

Final ly ,  using subscripts 1 and 2 to denote the 
p r imary  and  secondary sets, the  normal  equations to 
be solved for x are 

(CI+C~)x = d~ + d2, (26) 
and 

Stain = (S0)1 ÷ (S0)2 - x'(di  + d2). (27) 

The significance tests and confidence l imits  which 
can now be derived will not be discussed here. Refer- 
ence can be made to any  s tandard  text  on statistics, 
for example,  Cramer (1946). A brief s u m m a r y  is given 
in Mackenzie (1957b). However, one overall result  can 
be stated. For no direction can the p% confidence 
l imi t  differ from the direction predicted from the  
above calculated R by  more than  tv~max [Smin/(N- 3)]½ 
radians (approximately),  where ~ a ~  is the largest 
characteristic root of the matr ix ,  (Ci+Ce) -i, and tp 
is the value derived from tables of the t-distr ibution 
for N - 3  degrees of freedom. 

If observations are made  of traces on only one 
surface, equations (21) are derived from equations (19) 
on premult ipl icat ion by  the mat r ix  I - rb i i~ .  Thus, 
equations (19) and (21) have the same solution, and, 
of course, lead to the same value of Sm~,. This is as 
it should be since, in this case, any  error in fl is in 
the nature  of a systematic  error and  can nei ther  be 
detected nor determined by any  statist ical  analysis:  
the observations are effectively independent .  

The author  will be happy  to furnish upon request, 
an i l lustrat ive numerical  example,  worked out in 
detail.  
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